Telegram Group & Telegram Channel
🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?

Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇

🔬 Они разделили вход на три части:
Данные (изображение или текст),
Вопрос (*how many…*),
Ответ (предсказание последнего слова).

🧠 Что нашли:

1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.

2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.

3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.

4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.

💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.

📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!

🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.

🔜 Читать статью полностью

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1848
Create:
Last Update:

🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?

Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇

🔬 Они разделили вход на три части:
Данные (изображение или текст),
Вопрос (*how many…*),
Ответ (предсказание последнего слова).

🧠 Что нашли:

1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.

2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.

3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.

4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.

💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.

📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!

🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.

🔜 Читать статью полностью

@machinelearning_interview

BY Machine learning Interview








Share with your friend now:
tg-me.com/machinelearning_interview/1848

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Machine learning Interview from id


Telegram Machine learning Interview
FROM USA